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ABSTRACT

In the study of linear elliptic systems of first order partial differential
equations in two independent variables, it has long been recognized that the
Bers and Beltrami systems play a special role. In this paper, a matrix
representation of classes of pseudo-regular functions which form a real linear
vector space is developed and used to further explore this role. In particular,
it is shown that if a, b, ¢, and d are Holder-continuous real-valued functions
defined in a domain & in the complex plane and such that 4bc - (a + d)2 >0
in .(7 and F = u + iv is a solution of the elliptic system f defined by
(1) Ux = an + be, (ii) -Uy = ch + dvy, then F may be represented by the
composition mapping geh where h is a homeomorphic Beltrami function and
g is a Bers function. Conversely, if f is analytic in £~ , one can find a
homeomorphic Bers function h and a Beltrami function g such that f = goh .

*
1, there exists a system 4 whose

Finally, if the coefficients of f are C
solutions are uniquely determined by solutions of v)’ and if f is a solution of

*
4 and g is the corresponding solution of 4° , the zeros of g are the critical

points of F .



SOME RELATIONSHIPS BETWEEN BERS AND BELTRAMI SYSTEMS AND

LINEAR ELLIPTIC SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS
W. V. Caldwell

1. ;ntroduction. Much work has been done in the investigation of the properties
of solutions of linear elliptic systems of partial differential equations. The
most casual review of this work shows that the work of L. Bers has been of
primary importance. In particular, Bers defined a class of systems of partial
differential equations which the author has taken the liberty of labelliné Bers_
systems and showed that these systems are of fundamental importance. Another
class of systems which is equally important and which has been studied for
many years is the Beltrami systems, Solutions of these systems will be called

Bers and Beltrami functions respectively.

The purpose of this paper is to further investigate the topological and
algebraic properties of collections of Bers and Beltrami functions and to extend
somewhat the results of Bers in showing the connections between an elliptic
system f of type (2.1) and uniquely determined Bers and Beltrami systems.
Most of this work was accomplished by developing and exploiting a matrix
representation for the Jacobian matrices of an elliptic system ur of type (2.1) .

In 1954, Titus and McLaughlin proved that if qfis a vector space of real

2X 2 matrices with non-negative determinants and having the rank property,

Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin under Contract No.: DA-11-022-ORD-2059.
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then either ?/ is one=dimensional and isomorphic to the real numbers or 4/ is
two-dimensional and equivalent to the complex numbers. This result suggested
the possibility of a matrix representation of the Jacobian matrices of solutions of
an elliptic system of type (2.1) . In Section 3, it is shown that if 4/ consists
of the Jacobian matrices of solutions of such a system defined in a domain o&‘
in the complex plane, then there exists a uniquely determined matrix representation
of 7/. Conversely, Theorem 3.1 shows that if 9 1s a vector space over the
real numbers of Jacobjan matrices with non-negative determinants, and having
the rank property and if 7/ contains two linearly independent elements, then 4
consists of solutions to a uniquely determined elliptic system of type (2.1) .
Solutions of a system ﬂf of type (2.1) are, of course, light and interior,
While such functions do not in general have derivatives, Theorem 3.2 shows
that if the coefficients of 4’ are c1 » one can associate with 'f a uniquely
determined system 4)’ * of type (3.18) such that if f is a solution of f there
corresponds a unique solution g of 4‘* whose zeros are the critical points
of f . Since Bers has shown that the zeros of a solution of 4’ * are isolated
and have no interior limit point (in the domain i of definition), it follows that
the solutions of f are pseudo-regular functions. In view of Bers' result, one
would like to conclude that solutions of a system of type (3.18) are light.
Unfortunately, one can find functions mapping & into the real line which are
solutions of a system of * of type (3.18) .

In one of the classic theorems in topological analysis, StS{low proved that

if f is light and interior in ;(7' , there exists a homeomorphism h defined in K7
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and a function g analytic in h{”) suchthat f =g+h . Ingeneral, h
depends on f and one is led to wonder what conditions must be placed on two

linearly independent functions £, and f2 defined ino(r which ensure that there

1
exist two functions 9 and g, analytic in h( 4(7) and such thaj: fi =q,° h,
i=1, 2 . A partial answer to this question was given in 1938 by Kakutani who

showed that a necessary and sufficient condition for a collection of pseudo-
regular functions to form a ring is that they all be analytic functions of a fixed
pseudo-regular function. In an earlier paper, the author showed that such
collections are algebras of solutions of a uniquely determined Beltrami system,
One is led to suspect that if these conditions are relaxed somewhat, further
results might be obtained. In Theorem 4, 3, it is shown that if 9 is the set of
solutions of an elliptic system /f of type (2.1) defined in /~7, one can find

a homeomorphic Beltrami function h defined in ,J and a Bers system 4 1

defined in h{ &) such that if f is an element of 9/, there exists a Bers

function g which is a solution of 4 , suchthat f=geh . Conversely,
Theorem 4.4 shows that if h is a homeomorphic Bers function defined in A?:
there exists a uniquely determined Beltrami system 4’ 1 defined in h{£") such
that if f is analytic in & there exists a Beltrami function g, a solution of
41 , such that f =ge<h, Furthermore, every such composition mapping is
analytic in J°. This latter theorem yields an easy method of extending many
theorems about analytic functions to theorems about Beltrami functions. That

this is possible is, of course, no surprise since it is well known that Beltrami
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functions which are solutions of a Beltrami system ﬂf are analytic with respect
to a Riemannjan metric determined by the coefficients of &° .

In an earlier paper, it was shown that if ar is a Bers system with C1
coefficients which has a harmonic mapping as a solution, then all solutions of
tf are harmonic mappings and the coefficients of 4’ are harmonic conjugates.
In Theorem 4,5, it is shown that if 4 is an elliptic system of type (2.1) with
Cl coefficients which has only harmonic mappings as solutions, then of is a Bers_
system.

The author would like to express his gratitude to C, ], Titus to whome he

is indebted for the original idea of the matrix representation and for the statement

and method of proof of Theorem 4, 2.
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2. .Preliminarx Definitions. All matrices considered will be 2 X 2 matrices
whose entries are Holder-continuous real-valued functions defined in a domain
A in the plane, If J is a matrix, we will denote the determinant of J by [J| .
If f is a C' function defined in A , we will denote the Jacobian matrix of f

by Xf) .

Def, 2.1: A matrix J will be said to have the rank property if [][ =0

implies that the rank of J is zero.

Def, 2.2: A fynctjon f will be said to be pseudo-regular in Aif Ofe C1 ’

@ Inel =0, @ J(f) has the rank property, and @ the set of critical

point in (’has no interior limit point,
L oed
Now let & be the set of all matrices with non-negative determinants, 3 the

set of all elements of @ that have the rank property, A the set of all Jacobian

matrices in & , [ the set of all elements of & of the form

L)

and the set of all elements of of the form

@ g
( _J , >0 in & .
0 a

Let a(x, y), b(x, y), c(x, y), and d(x, y) be Hdlder-continuous real

-

valued functions defined in £&” . A system f of first order partial differential

equations
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(2.1) U, =av, + bV,
-U =cV_+dV
b4 X b4

is said to be elliptic if 4bc - (a' + d)z > 0 and uniformly elliptic if a, b, c,
and d are uniformly bounded and there exists a positive number ¢ such that
4bc - (a + d)z > € . We shall always assume that 4 is normalized so that

b >0 . Two special cases of elliptic systems which are of particular interest

are Bers systems

Ux = an + bVy
(2.2)
- =bV =aVy
b4 X Y

and Beltrami systems

Ux = an + be
(2. 3)
-U =c¢cV_+av
Yy X b4

where bc-az=l .

A function f =u + iv will be said to be a solution of (2.1) if fe¢ C' and
if the pair (u, v) satisfy (2.1). Solutions of (2.2) will be called Bers
functions (Bers calls them "pseudo—~analytic functions of the second kind")

and solutions of (2.3) will be called Beltrami functions. If 4/ is the set of

Jacobian matrices of solutions to an elliptic system f of type (2.1), it is clear
that 4/ forms a real linear vector space. Using Golomb's results, it is easy to

show that q/ is a maximal real linear vector space in & .
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3. Matrix Representation. In this section, we establish the matrix
representation of the set 4 of Jacobian matrices of solutions to an elliptic
system 4’ of type (2.1) . This is accomplished by showing that one can find
matrices S and T in ,J depending only on the coefficients of 4’ such that
9 -SCT is a maximal linear vector space in @ and 7/C 77 Further, if
17 is a real linear vector space in 3 (containing two linearly independent elements)
then 2/ = ?f\ a3 consists of solutions to a uniquely determined elliptic system

& . We will need several lemmas. Lemma 3.1 is classical but the details

of factorization are needed here,

Lemma 3.1: 1et P be a matrix with [P| >0 . Then there exist unique

matrices S and T in Jand C, and C, in [ suchthst P =SC, =G,T .

1 1
Proof: It will suffice to prove the existence and uniqueness of S and C1 .
It will be evident that the same kind of argument would prove the existence and

uniqueness of T and C2 . Let

Py P2 @« P Aoosw
P21 P22 0 @ B »

1

where S and Cl are to be determined. Setting S- P= Cl, we obtain

(3.1) P)f* = PyP=M =py,a

-]
(3' 2) plza - pzzp S=p= -lea
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or, multiplying by o and rearranging terms,

2
(3.3) P,,¥ + pZIap = p11

2
(3‘ 4) pZIQ - pzzap - -plz .

Solving for az ’

2 PuPaz " PPy |p|
(3.5) a = = .
2 2 2 2
P2 ¥ Py P2 ¥ Py

Since |P| > 0, at least one of the terms in the denominator is not zero. We

assume pzzaﬁo « Then,

-1
aes el 6 Py®t P
= »
2 o2 Y)

s N = P,,9, and b =Pya .
Py, * Py

To show uniqueness, suppose that for some S. in ;J and D in G )

1

B S -4
] ] 1
5, K D= ,
0 9 ) A
we have P =SC =8D so that sl'lsc1 =D .

Proceeding as in the proof of the existence of S and C,, we obtain the

l b4
equations
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a ozl g [31

(3.6) - =IAN+ T -] u=0
o @ o a
1 1
(] {31 a ozl

(3.7) - — = ANt | - - p=0 .,
al a ozl o

A necessary condition for the existence of nontrivial solutions for A and p is

2
a a\° B8
(3.8) _ -] (=2 =0 .
Ql o Q’l o

But (3.8) holds if and only if a=a, and P= (51 .

1
The following lemmas are due to J._E. McLaughlin and C._J. Titus. Since

Lemma 3.3 has not been published previously, its proof is included here.

Lemma 3.2: Let ; be a vector space in 5 which contains two linearly

independent elements. Then there exists a pair of matrices, P and Q, such
that [PQ[>0 and 9/ = PC Q .

Proof: Titus and McLaughlin [8] .

~

Lemma 3.3: Let 2/ be as in Lemma 2,2. Then there exists a unique pair,

S and T, of elements of ,3 such that
77 =sCrT.

Proof: Consider the matrices P and Q in Lemma 3.2. We define
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P if |P|>0
P, =
-P if [Pl <0
Qif [pl>0
Q= .
I {-Qif [pl< o

Then, by Lemma 3.1, there exist for P1

and C2 are in C and S and T arein)J .

and Q1 unique factorizations

P, =8C,, Q =C,T where C,

Since [ is aring, we have & =P[Q= SCICCZT=SCT . To show

uniqueness, we suppose there exist matrices Sl’ SZ’ Tl’ and '1‘z in /X such that

-1 -1
Then, letting S =8 8, and T =T,T C - S, T, . Therefore, for

c, in [ , there exists C2 in E such that C =S° C2 To . But Ci(i=l’ 2)

1 1
may be expressed in the form C1 =\ i 1+ My K where I is the identity matrix

and

Since we may pick C1 so that either ).l =0 or K = 0, it follows that soTo

-1 -1
and SOKTO are in [ , hence (SOTO)(SOKTO) = SOKSO L
-1 -1
and (ST ) (SKT)=T KT <« [ . It will be sufficient to show
that So must be the identity matrix. The same argument can then be applied to

show that To must also be the identity matrix, Let soxs;l = D where
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a B N -
§ = -1 and D = .
° 0 a m A
then
~1 2 .2
a -Q -
L[ B N
S KS = =
o O
a—-Z ﬁa-l m A

From pa-l a-pa-l anda 2 -a2+l32 , it follows that B=0 and a=1 so that

S =1I.

Theorem 3.1: Let % be a vector space of elements of /3 such that % contains
two everywhere linearly independent elements. Then 4/ consists of the Jacobian
matrices of solutions of an elliptic system tfo of type (2.1) .

Proof: The proof will consist of the construction of the desired elliptic

system, By Lemma 3, 3, there exist matrices S and T in ,.5 such that ﬁy(_; sCT .

Let
a P Y ] u u
S = | T ] sandlet v=[ ¥ Y] o Y
0 a 0 v v v
X Yy

Then there exists C in [ ,
LS —

C= ’
e LN
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such that
u u a g
X Y
[
- _l :.‘
. vy 0 «a "
yoh + yBp
B i
[+4
so that

(3.9 u, = yak + yBp

(3.10) u, =(a6+%)k + (B -%)p

= i
(3.11) V.= o

(3.12) v =488
y ay «

Solving (3.11) and (3.12) for » and p ,

(3.13) x =~ Gavx + yavy, and
a
(3.14) p = Y Ve
Substituting into (3.9) and (3.10) ,

2.2
{3.15) ux—a(ﬁ-ayﬁ)vx+a ) vy

(3.16) -u, = a? (8% + lZ)vx - o+ avé)v,

#354
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If we set a = o{p - ay6), b = a’y, ¢ = a(6> +y™3, and d = ~o{ + ays), then
4bc -(a+d)2 = 4a4 >0 .,

Note that a, b, c, and d depend only on the elementsof S8 and T .
Further, if T=I, y=1 and & =0 so that in this case, b=c and a=-d

and the system of partial differential equations thus determined is a Bgrs system.
On the other hand, for S =1, a=1 and f=0 and in this case, a =d and

bc - aZ =1 so that the system of equations becomes a Beltrami system.
Conversely, if Wis the set of Jacobian matrices of solutions of (2.1), a simple
computation yields the elements of S and T as functions of the coefficients

of the system of partial differential equations. If a, b, ¢, and d are the
coefficients of an elliptic system v( of type (2.1) and B, y, and & are
the corresponding elements of S and T, itis obvious that the continuity and
differentiability properties possessed by all the functions a, b, ¢, and d

are also possessed by o, B, y, and &6 . It is easy to show that the converse
also holds,

Finally, any elemernt of A determines two distinct elliptic systems, one
Beltrami and one Bers.

Titus and McLaughlin have shown that [ is a maximal real linear vector
space in {3 and that if ¥ is any real linear vector space in E , then Y is
either one-dimensional and equivalent to the field of real numbers or is two=-
dimensional and isomorphic to |5 . It follows that if @ =sC T, S and T

gy~

( . ~ , ~ - .
in ' , '/ is maximal in ‘g and "= P nAD is maximal in o .
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For S and T determined by an elliptic systemof of type (2.1), itis
clear that there exist elements C in C such that SCT is not a Jacobian

matrix and therefore does not correspond to a solution of A . If

ul UZ a 6] N -3 Y )
] = = -1 -1 = SCT ’
vl v, 0 a n A 0 Y
aul auz
a sufficient condition for J to be a Jacobian matrix is that 5;- =% and

v, 9v

-55— = I ° We use this to impose conditions on C . An easy computation

shows that if the pair (A, u) satisfy the system

f;(vak + yBu) = 38; [(as + ﬁv-l)\ + (86 - av-l) M|
(3.17)

3, =l -1 -1 -1
3y (¥@ u)=5?;[a Y Mt ba ],

J = 8SCT is a Jacobian matrix, For the sake of simplicity, we will assume that
the elements of S and T, hence the coefficients of the corresponding elliptic

system f , have partial derivatives (at least in the L, sense). We are led

2
to the following theorem.
Iheorem 3:2; Let S apd T be elements of 4 ,
a g Y 5
5= -1]? T= -1] ?
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and let ,f be the corresponding elliptic system of type (2.1) . Then there

exists a corresponding elliptic system ,f* of the form

2
kx—-yﬁp.x-i-y |.|.y+AX + Bp

(3.18)
A =(6%4 y Zyu, - ybu_+ O\ + Du
v A T L

where A, B,C, and D are rational functions of a, B, y, 6, and their

partial derivatives, such that if £ is a solutjonof £ , there exists a unique
solution £* of X* such that the zeros of f* are precisely the critical points
of f . Conversely, if f* is a solution of X*, f* determines a solution f
of }f uniquely (up to an additive constant).

Proof: * is obtained by simply carrying out the indicated differentiations
in eq. (3.17) and solving for )‘x and xy . The computations are straight-

forward but very tedious and will be omitted. One obtains
-1 -1
(3.19) A=a @ty vy

-1 2 -1
(3.19) B-yyy @’y e v, + yba “ay

1 2

-1 ! -1 =1 - -1 =2 -
(3.20) C=a ay-l-y yy-Z&y @a'q -y b6 ~a ¥ Px-ﬁy Yy

-2 =2
a a
x

B

1

e PR Sy -2 =l -3 -1
(3.2 D=a By a’y Sﬁx-l-y a e -y Yy, 6yy+6ya @y

1 -2

a «a

2 -1 -1 -
+56x S « ax-l-pa ay-p5Y < °



-16~ #354

If f=u+iv and f* = M + ip are corresponding solutions of ,( and ,{*
respectively, it is obvious that the zeros of f* are precisely the critical points
of f .

Elliptic systems of type (3.18) have been studied by Bers and Nirenberg.
In particular, they have shown that if f* is a solution of a uniformly elliptic
system X * of type (3.18), f* not identically zero, then the zeros of f* are
isolated and the index of f* at each zero is positive. Furthermore f* is
completely determined by its values on any infinite set of points having a limit
point in &~ .

Note that if vf is a Beltrami system with constant coefficients, a(’ = f * .

x*
If £ is aBers system, J is of the form

L. p.y-l-Ak + Bp

(3.19)
-).y = By + C\ + Dp
*
and if the coefficients of the Bers system are constants, g is just the Cauchy

Riemann equations. Systems of the form (3.19) were studied by Carleman.
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4. Some Consequences. From the remarks of the preceding section, it
follows easily that if 4° is an elliptic system of type (2.1) such that the
corresponding system oJ* has uniformly bounded coefficients on every compact
subset of £, solutions of 4 are pseudo-regular. In an earlier paper, it
was shown that if 9y is a collection of pseudo-regular functions containing
two linearly independent functions and such that for f and g in % , &+ ng
is in ¥ for arbitrary complex numbers ¢ and n , then % consists of solutions
to some Beltrami system. One cannot expect so strong a result in the more
general systems of type (3.18) . The condition that the set9, * of solutions
to an elliptic system J4°* of type (3.18) form a vector space over the complex
numbers may be shown to be equivalent to requiring that a« and P satisfy a
system of two non-linear first order equations. We can, however, prove a
weaker theorem.

Theorem 4.1: Let S and T be elements of A and let 4 * be the
corresponding elliptic system of type (3.18) . If S is a constant matrix, the
solutions of £ * form a vector space over the complex numbers.

Proof; We need only show that if S is a constant matrix and \ + ip is

a solution of £ * , then -u + i\ = {\ + i) is also a solution. Let S be a

constant matrix. Then f* is of the form
2 -1
M =¥ by oty Ty Mt vly, =8

2, -2 -2
(4.1) Me =87y iy = vBe Y vy~ ¥E, - BY )N

-3
by Tyt By, -85 )p .
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Solving for My and ky in (4.1), we obtain
by = =yEM F YA -v-lv B+ yly, =8 )N
Hx X Yy X y b4

2, -2 -2
(4.2) g = (67 4y Ihy = yBh =y vy - vy 6y, )1

-3
-(v yx+ 6yy 66x)). .

Therefore, =—p + i\ is a solution of X * |

If f=p+iv is a solution of an elliptic system of type (2.1), it is well

known that f is quasiconformal a. e. and the dilatation D of f is given by

2 2 2 2

u du v v P .
Bf) = L = _l}.lu‘ﬂ_ =D+% .
UV, uyvx Kf) D

In general, E(f) depends on f and cannot be expressed solely as a function of
the coefficients of /f . A simple computation, however, shows that if f is
either a Bers system or a Beltrami system, HKf) depends only on the coefficients
of )\0 . The following theorem shows that these systems are the only ones
with this property.

Theorem 4.2. Let % be the set of solutiong of an elliptic system o of
type (2,1), v the set of Jacobian matrices of elements of % , and let S and
T be the elements of ,3 such that 7 CsCT. Fx fe % , Hf depends
only on the coefficients of 4 if and only if at least one of the matrices S and

T is the identity matrix,
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Proof: Let Kf) = SCT where
a [*] N - Y )
S= -1} €= ,and T = - .
0 «a " N 0 Y
Then
SCT Iscrl
E(f) = =
SCT 2. 2
LR T
and
Iscrl = (yz e+ o262 + Zaﬁéy-l + Bzy-z + a-zy-z)kz
-1 2, - -2 =2 -
(4.3)  2aBy’ + apo’ - o262y 4 ooy - aBy 24 B Iy Mg

2.2 - 2 -2 2 =2 2 =2, 2
+(ﬁzyz+96 —Zapsy1+ay tya +&6 a ) .

In order for E(f) to depend only on S and T, the coefficient of the Ay term
must vanish and the coefficient of the \ 2 term must equal that of the p.z term.

These conditions are equivalent to the equations

(4.3) azp(y4+ yzﬁz -1) = y6(a4 - az@z ~-1)

(4.4) (a4 - az 2

8% - 10v*+y26% - 1)+ aaPpys = 0 .

Suppose p# 0 . Then from (4.3) and (4.4)
(4.5) yoo 28 [(e? - oZp - 1)+ 4a%8%] = 0

so that we must have 6 =0 . If § =0, it follows from (4.3) that y=1 so
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T=1,and of is a Bers system, Conversely, if p=0, a=1 and S =1 so
that gf is a Beltrami system.

If .(7' and ,0‘1 are topologically equivalent domains and h is a
homeomorphism of /(7 onto UI , then for f defined in /J; h induces a function
£ in 1 £ = foh-'1 . It follows that if vf is an elliptic system defined in
/(7 , h induces an elliptic system ; in o(Ji . Furthermore, if %V is the
set of solutions of X , h maps % into a collection W 1 of light interior
functions defined in K); . [It is not true, in general, that wl will consist

of solutions to J{V . In an earlier paper, it was shown that if h {s conformal,

a necessary and sufficient condition for 9/, to be the set of solutions to ,?

1
is that z (hence X ) be a Bers system]. These considerations, together

with the matrix representation concept, suggest the following factorization
theorems.

Theorem 4.3: Let f be an elliptic system of type (2.1), % the set of
solutions of f and S and T the corresponding elements of ;J, . Let af 1
and a( 2 be the Bers and Beltrami systems correspondingto S and T respectively
and let h be a univalent solution of .f 5 If a)ol is the Bers system induced
in ,0'1 = A ) by the Beltrami function h, then for f ¢ 9V there exists a
Bers function g satisfying ?l such that f = goh ,

Proof: Inview of the matrix representation, we can find functions «, f,

y, and & suchthat & is of the form
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(4. 6)

=2]-

2 2
Ux=a([3-ay6)vx+a Y Vy

2,2 =2, _
-Uy-a(S +y )Vx a(ﬁ-l-ay&)vy

Then | is of the form

(4.7)

2
Ux = apVx-l- o Vy

2
-U =a V_~-affV
v aV, aﬁy

and o, is of the form

(4.8)

2
Ux=-(6Vx+ Y VY

2, =2
=U_=(6"+y )V _~-ybV_ .
y =& Hy )V, -V,

Let f = u + iv be a solution of of and let h = p+ iq be a solution of f 2

Then ;F , 18 of the form

(4.9)

where :: aroh“l

=a P +
?p tI‘p lIJq
N
®q Yo ~@ P ¥y

and ; =B »h-l . The proof of the theorem will be accomplished

by showing that if g(p, q) =r+is is definedby g =feh™) | then g isa

solution of ?l . For g so defined, r(p(x,y), &x,y)) = ux,y) and

s(p(x,y), Ax,y)) =v(x,y) . Using the chain rule, rppx + rqqx =u, ,



e

-22~ #354

r =u [ + s =v and s + s =v ., Since h=p+1i
rppy+ qJy © Y’ ppx % *Vx’ pPy ¥ %q%y T Vy P¥iq

is a univalent solution of 4}" 2 pqu - pyqx # 0 and we can solve for rp and

r . We have
q
(4.10) r =(p,q -p.a) (Lq -uq)
' p Xy v X qu yqx *
and since u + iv is a solution of 4 ,
(4.11) r_=(p.q_-p,a) | [B-aydlv_+a \v_la_=[262+ v 2, ~a(Brayslv_]
P XY YX X iy x v
=1 2,.2 -2
= (p,q,~P q,) {[a(ﬁ-v%)qy-a(b vy g lv,
+[o” %q +oAB+ ayb)q v
[+
Y YOI Vg
Substituting for vx and vy, the term in brackets becomes

(4.12) [ - avla, + o’(6” + v )ad (s p, + 5.q)

¥ [azvzqy = olft+ ayblq,](s Pt s .q) |

2, =2 2 2 2
Since p + iq is a solution of fz , pqu-pyqx-(a +y )qx -Zyﬁqqu +y qy

and (4.12) reduces to
2
(4.13) (p,a,-P ) (afs +a 8

Noting that a(p,q) = ofx,y) and fpv(p,q) = B(x,Y),
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~ ~ ~2
4,14 r = s +a 85_ .
(4.14) p=2 B s, q
Using the same procedure, we also obtain
(4.15) -t = a~z s = :F s
| q P qa .

Therefore r + is is a solution of ? 1 and this completes the proof.

If vf in the theorem above consists of the Cauchy-Riemann equations,
then o, , and £, will also consist of the Caychy-Riemann equations and in
this case the theorem is trivial. One can, however, relate analytic functions

with Bers and Beltrami functions.

Theorem 4.4; Let f bea Bers systemdefinedin <andlet h bea
unjvalent solution of 40 .
system /' defined in ,0; = h( ). such that if f is analvtic in « there
exists a Beltrami function g satisfying 401 and sych that f=geh .
Conversely, if g if any solution of a}’l, geh isapnalvticin -

2 2
Proof: Let 450 be the Bers system Ux = apvx + a Vy, -Ui’ = a Vx - aﬂVy,

>0, andlet h=p+iq bea homeomorphic solution of of . Define the

functions y and § in ,0'1 = A by y(p,q) = a(x(p,lq),y(p,q)) y

8(p, q9) = ~B(x(p, q}), ¥(P, q)) and let ”,l be the Beltramj system Up = y&Vp + yzvq ’
"'Uq = (62*' l—z)vp - y6Vq . If g is a solution of f, it is easy to verify that
the composite function f = geh is analytic in <. Conversely, if f is analytic

in £ and we define g =f .h-l, a simple computation similar to that in the proof
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of the preceding theorem shows that g is a solution of 4)’ 1

The following corollary is known but is included for the sake of completeness.

Cor, 4.1: If h is a univalent Bers function, n! is a Beltrami function,

Proof: In the preceding theorem, choose f to be the identity mapping.

Note thatTheorem 4. 3 may be applied to the problem of mapping a second
order elliptic equation into canonical form. Let A, B, and C be real-valued
C1 functions in & such that AC - B2 >0, A>0 ., If we define functions

2 2 2 2 2
a, y, and & by ar4=AC-B , @y =A, -2a y6 =B, and az(é +y.ﬁ=C

it is easy to verify that these functions are well defined providing we pick y to
be positive. A simple computation shows that if h = p + iq is @ homeomorphic

solution of the Beltramj system

’

= 2 = (24 L
Ux- y6Vx+yVy, Uy-(& + Z)Vx y6Vy

h maps the elliptic equation

4.16 C + 2B + + D =
(4.16) Pox Py Myy o, + E¢y +Fp=0
into the form

(4.17) + Hq:p + K¢q+ Ly=0

q‘PP ¥ tlqu

and if D, E, and F are bounded and continuous and az and the Jacobian
determinant of h are bounded away from zero, H, K and L are bounded

and continuous in h(,0") .
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In an earlier paper, it was shown that if « is a Bers system with C1
coefficients ¢ and T and which hasa harmonic mapping as a solution, then all
solutions of 4 are harmonic and T + i is analytic. We want to show that
if of is an elliptic system of type (2.1) such that all solutions are harmonic,
then 4% is a Bers system. Before proceeding, however, a few preliminary
remarks are necessary. If of’ is an elliptic system of type (2.1), it follows
from the extended Riemann mapping theorem (Bers [2]) that & has as many
linearly independent solutions as we want. Linear independence of two solutions
f=u+iv and g = p + iq does not, however, preclude the possibility that at
some point z, in o ’ vqu - qux =0 . One can show that a necessary and
sufficient condition that the Jacobian of some real linear combination of + Bq
vanish at z  is that Vil "V 9, 0 at that point. If 9 is the set of all

functions analytic in .0; it is easy to show that for z_ ¢ & one can find

0
f=u+iv and q = p+ iq in % such that vqu-quxaeo at z=2z, .
(It follows easily that the same statement is true for Beltrami functions). I have
been unable to prove the theorem for the general case where %W consists of

the solutions to an elliptic system ofo of type (2.1). The following lemma, however,
is an immediate consequence of the remarks on analytic functions.

Lemma 4.1: Let O be a simply connected domain and let  be an elliptic
system of type (2.1) defined in «” and such that all solutions of 4 are
harmonic. Then for zZ, in «7 there exist solutions f = u + iv and g =p+iq

such that vqu-quxato at z=z .
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The proof is trivial and will be omitted.

Lomma 4.2: Let < be a simply connected domain and let J be an
elliptic svstem of type (2.1} with C' coefficients and such that all solutions
of £ are harmonic mappings. Let &* be the coresponding svstem of tvpe
(3.18). Thenfor zye« < and ¢ >0 there existsa solution M +iu of J*
and a point z, in N(z,, ¢) (The ¢ -nelahborhood of z,) suchthat 2, s
azero of M +iu butis pota critical point,

Proof: Let f=u +1v, g=u+iv, and h=p+iq be linearly independent

solutions of 4 such that vqu - qux #0 at z =2z_ and choose 5< ¢ such

0
that vqu-quxaﬁo in N(zo, §) . At z=zo, the equations V.S .!vx-l-?nqx R

v = v+ uniquely determine £ and M so that the function
vy y )nq, quely

F=f-42g - mh has a critical point at z, and the corresponding solution of

0
¥, \ +ip, hasa zeroat z, - We may, however, have the unhappy

tuation = =
situ that at 2y, we also have v v ””qxx and vyy lvyy + quy .

In this case, \ + ip will also have a critical point at 2 Define functions

o L
Z and  in N(z,, 6} by the equations v -lv + qu, -iv + 7nqy
Since solutions of £ are at least C 1 and M are at least Cl . Itis
trivial to verify that 4 and M also satisfy the equations u = .!u + 7np and

'\T =4u + fnpy . If at some point in N(z ,6) the equations

Yy y
Vex = lvxx-l- 'qux, v + 'mqyy, -l- w\p and uw=tuw+)»pW
also hold, then at this point Lv.tmq =0, ‘xux tmp = o, yvy % o,

1 m. p. =0 and it follows that at this point £ = =0 .
and .!yuy-l-)nypy n ows 8 poin ‘x 1 my ‘my 0
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But if this happens at every point in N(z0 , 6), we must have 1 and ™ constant
and this contradicts the assumption that f, g, and h are linearly independent,
Let z) be a point in N(zo, §) such that the above equations do not hold at

z=2 . Then for £ = i(zl) and M=m (zl) the solution of &#* corresponding
to F=£f-~12g - Mmh has a zero at z) but does not have a critical point at

that point.

Theorem 4,5, Let A and 4 be as in Lemma 4.2. Then 4 is a Bers

system.
Proof: Let S and T be the elements of \J determined by the coefficients
of af . For f a solution of 4 , let M+ ip be the function determined by

J(f) = SCT . As we have already seen, \ + ip must satisfy the system

2
Xx--yﬁp.x-l-yp.y-l-AXi-Bp.
(4.18) .
A =624y )u. - you_ + C\ + D
v Y ey - YRy

It is easy to verify that since f is harmonic, A\ + ip must also satisfy the
system
2. =2 ~ o~
N =Y¥8u, +(67+y T, + AN 4By
(4.19)
2 ~ ~
-\ = + yo A
y =Y Byt yéu +CM+ Dy
~ ~ ~ ~
where A, B, C, and D are continuous rational functions of «, 8, y, 8, and

their partial derivatives., If z is a zero but not a critical point of \ + iu ,
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(4.18) and (4.19) requirethat 6§ =0 and y=1 at z The continuity of

l L]
y and & and Lemma 4.2 then insure that § =0 and y=1 so T is the
identity and pf is a Bers system,

Note that if X is a Bers_system whose solutions are harmonic mappings,

the associated system 4 is of the form

" Ty
xx=py+2—o'-x T2 M

(4. 20) oy v,
Ry The A g

Bers and Nirenberg have shown that if g =\ + iu is a solution of a system °*
of type (3.18), there exist a complex valued function s(z) and an analytic
function h(z) such that g(z) = es(z) h{(z) . Ingeneral, s(z} depends on

g(z) . Itis easy to verify that s(z) must satisfy the equation gs_ =g_ .
z z

If, however, KA * is of form (4.20), we are in better shape.

Theorem 4,6. Let * be a system of type (4.20) where o is a positive
harmonic function and let s = p + iq be a solution of the system

Py =9 +2

(4.21) - .
- - - —x
py qx 20

If g=\ +iu is a solution of 4 * , Nz)= e-s(z) g(z) is analytic. Conversely,

i h is analytic in 0] eX? M2 1o 4 solution of 7.
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Proof: For g and s as above and h(z) = e-s(z) o(z), itis trivial to

verify that h_ =0 and h is analytic. Conversely, if h is analytic, let

2
A+ ip=o(z) =eX hz) . Then g_ = X hiz)s_ = (n +iuds_ = (0 +1FX%“;3)
2 2 z

and g is a solutionof & * .

Note that if p + iq is a solution of (4.2l), q is harmonic and if < is
simply connected, every harmonic function q determines a solution of (4.21) .
In particular, if we pick q=0, p= 13 Ine and ep = N/;_ , It follows that if
h is any analytic function, Noe h is a solution of o * . It is easy to see
that all such solutions can be represented in this form. Furthermore, if £ is
the Bers system associated with a;o * and h = ¢ +1iy is analytic, the solution
(unique up to an additive constant) of f determined by No h can easily be
represented as a line integral. For example, if ¢ =1 and ¢ =0, the solution

x
of 40 determined will be f cdx + iy .
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